Monatshefte für Chemie 114, 669-674 (1983)

IR-Spectral Investigation of the Structure of Glasses in the Fe_2O_3 — V_2O_5 System

Vesselin Dimitrov*, Yanko Dimitriev, and Vili Mihailova

Higher Institute of Chemical Technology, Sofia-1156, Bulgaria

(Received 20 November 1982. Accepted 14 December 1982)

The structure of glasses in the $Fe_2O_3 - V_2O_5$ system in the 0-50 mol% Fe_2O_3 range is studied by IR-spectroscopy. It is found that the introduction of Fe_2O_3 favours the transformation of the VO_5 -groups into VO_4 ones. This effect may be shown with the aid of IR-spectra, owing to the fact that these glasses are characterized by two high-frequency bands at 1020 and 930 cm⁻¹. The first is determined by the vibrations of the short V = O nonbridging bonds in the VO_5 groups, while the second is assigned to the vibrations of the V-O-bonds in deformed VO_4 -tetrahedra.

(Keywords: IR-Spectra; Fe_2O_3 — V_2O_5 System; Vanadate glasses, glass structure)

IR-spektroskopische Strukturuntersuchung von Gläsern des Systems Fe₂O₃-V₂O₅

Die Struktur von Gläsern des Systems Fe_2O_3 — V_2O_5 in dem Bereich von 0—50 Molprozent Fe_2O_3 wurde mit Hilfe der IR-Spektroskopie untersucht. Zusatz von Fe_2O_3 begünstigt die Umwandlung der VO_5 - in VO_4 -Gruppen. Das kann in den IR-Spektren durch zwei Banden bei 1020 und 930 cm⁻¹ festgestellt werden. Die erste wird durch Schwingungen der kurzen V = O-Nichtbrückenbindungen in den VO_5 -Gruppen verursacht, die zweite wird auf Schwingungen der V-O-Bindungen in dem deformierten VO_4 -Tetraeder zurückgeführt.

Introduction

Vanadate glasses are a relatively new class of vitreous materials belonging to the amorphous oxide semiconductors. Since electron transport depends on the structure we started a study of the shortrange order and the distribution of the V—O—V-bonds. In the present paper the effect of F_2O_3 on the structure of vanadate glasses is discussed in continuation of a series of investigations on binary and ternary vitreous systems containing $V_2O_5^{1-6}$.

Methods

Previously homogenized batches of Fe_2O_3 (Reachim) and V_2O_5 (Reanal -99.5%) were melted in porcelain crucibles in the 800-1 200 °C range and were vitrified by quick quenching with the aid of roller techniques as in 7. The amorphity of the samples was established by X-ray studies with an URS-50 IM (with Cu K α -radiation and Ni-filter). The glasses were crystallized after a 24 h exposure at a temperature whose exact value for each composition was determined by DTA with a Paulik Paulik, Erday derivatograph. The IR-spectra of the glasses and the crystallization products were taken on a UR-10 Karl Zeiss Jena spectrophotometer in the 1 200-400 cm⁻¹ range (1 200-700 cm⁻¹)

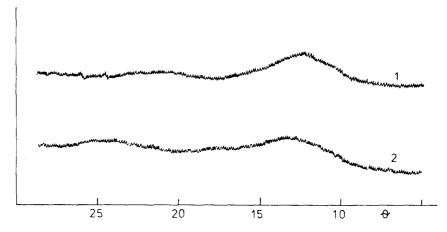


Fig. 1. X-ray diffraction data of two glasses of the Fe_2O_3 — V_2O_5 system: 1 30 mol% Fe_2O_3 ; 2 50 mol% Fe_2O_3 (FeVO₄)

prism NaCl, 700-400 cm⁻¹, KBr prism). The samples were photometered in Nujol. The wavenumber accuracy of the recording of the absorption maxima was \pm 1.5 cm⁻¹ for the crystals and \pm 3 cm⁻¹ for the glasses.

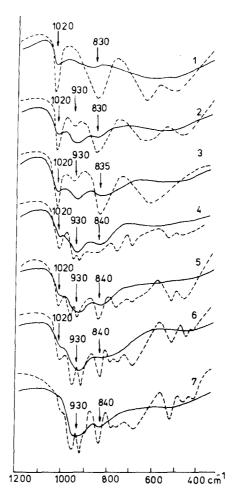
Results

Glasses in the 0-50 mol% range for Fe_2O_3 were obtained.

Fig. 1 shows the X-ray diffraction data of two representative glasses of the Fe_2O_3 — V_2O_5 system, containing 30 and 50 mol% Fe_2O_3 . A well-expressed halo about 12.5° is observed.

The IR-spectra of glasses and crystalline products show (Fig. 2) that the introduction of Fe_2O_3 leads to the appearance of a new band at 930 cm^{-1} , in addition to that at 1020 cm^{-1} . It remains the only highfrequency band in the spectrum of the vitreous $FeVO_4$ (50 mol% $Fe_2O_3:50 \text{ mol}\% V_2O_5$).

Discussion


Vanadate systems are particularly suitable as an object for IRspectra investigations, owing to the presence of characteristic bands related to vibrations of isolated V—O-bonds. Their frequencies are found in the 1020-850 cm⁻¹ range. Their exact position is the result of the place of the composition in the phase diagram, i.e. of the kind of VO-polyhedra as well as their manner of bonding with the rest of the structural groups. V_2O_5 and the orthovanadates may be viewed as two final cases in the present investigation, since according to the phase diagram^{8,9} no other compounds are formed.

The IR-spectrum of the pure crystalline V_2O_5 (Fig. 2.1) is characterized by a particularly strong band at 1020 cm^{-1} and an intense band at 830 cm^{-1} ^{1, 10, 11}. It is built up by deformed VO_5 trigonal bipyramids, bonded in zigzag-like chains¹². Each VO_5 -group contains a short nonbridging V=O bond (vanadyl group). The band at 1020 cm^{-1} is assigned to its vibrations while that at 830 cm^{-1} is related to the vibrations along the V—O—V chains.

In the case of transitions toward meta-, pyro- and orthovanadates, the frequency of the V—O-vibrations decreases and this is related to the increase in the symmetry of VO-polyhedra, equalization of the lengths of chemical bonds and a decrease in the coordination number of vanadium^{6, 13, 14}.

The VO₄-tetrahedron is the main vanadium polyhedron in the orthovanadates^{13, 14}. The free VO₄^{3—}-tetrahedron, possessing a T_d-symmetry, has two active vibrations at 825 cm⁻¹ (ν_3) and at 480 cm⁻¹ (ν_4) in the IR-spectrum¹⁵. Due to the complicated nature of interaction in the crystal the symmetry of VO₄-groups decreases resulting in additional bands because of the breaking down of the degeneracy^{16–18}.

The orthovanadate of iron (FeVO₄) was studied by means of IRspectra in the crystalline state by a number of researchers^{9, 19, 20}. Its IR-spectrum is characterized by absorption bands at 985, 950, 920, 885, 840, 770, 750, 675, 515, 460, and 420 cm⁻¹ (Fig. 2.7). The group of bands in the 950-885 cm⁻¹ range may be related to the stretching vibrations of the tetrahedral VO₄-groups^{19, 20}. It is interesting to note that they are markedly displaced towards higher wavenumbers in comparison with the positions of comparable bands in the spectra of other orthovanadates. According to *Baran*²⁰ this is the result of strong interactions between Fe—O and V—O vibrations, caused by vanadium and iron coordination polyhedra forming a strongly linked condensed structure; then one deals not anymore with isolated VO_4^{3-} -groups as found in other orthovanadates. So it was shown for the crystalline structure of

 $\rm FeVO_4$ ²¹ that there exist three types of independent Fe-atoms, two of which form deformed octahedra, while the third one forms a trigonal bipyramid with three tetrahedrally coordinated independent V-atoms. The FeO-coordination polyhedra form a double chain possessing six common points.

The crystal-glass transition (Fig. 2) influences the IR-spectra. A certain broadening of the bands and a decrease in their intensities is

observed together with a decrease in their number which is the result of the disorder in structure and of the overlapping of the bands. The preservation of the band at 1020 cm^{-1} in the spectrum of a vitreous V_2O_5 (Fig. 2.1) is an indication¹ for the presence of VO₅-groups with a short nonbridging V=O bond in the structure.

The spectrum of the pure vitreous FeVO_4 is characterized by a highfrequency band at 930 cm⁻¹. According to the similarity in the IRspectra between the vitreous and the crystal FeVO_4 (Fig. 2.7) this band may be related to stretching vibrations of the VO_4 -groups.

Along with the above-mentioned band at 1020 cm^{-1} in the spectra of binary glasses, also the other one at 930 cm^{-1} is observed raising its intensity with the increase in the Fe₂O₃ content in a direction toward FeVO₄ (Figs. 2.2-6). The existence of the two bands in the spectra of binary glasses is evidence for the simultaneous presence of two kinds of polyhedra: VO₅- and VO₄-groups.

Two mechanisms for the incorporation of modifying ions in the lattice of the vitreous V_2O_5 have been suggested in an earlier paper⁶. According to the first mechanism, the M^{n+} -ions rest in between the vanadate chains and layers and may affect the isolated V = O-bonds. As a result of this, they are markedly elongated and the vibration frequencies shift towards low-wavenumbers. In the second case the ions occupy a position in the chain itself and their influence on the V=Obonds is limited. The preservation of the V = O position at 1020 cm^{-1} in the IR-spectrum of the glass is an indication of the fact that it is not directly influenced and the coordination number and the symmetry of the VO-polyhedra do not change. The strong displacement of the frequency to $930 \,\mathrm{cm}^{-1}$ is proof for the interaction of the V=O-bonds with the Fe³⁺-ions with the formation of Fe-O-V-bridges and the transformation of VO_5 groups into VO_4 ones. Thus, with the introduction of the first amounts of Fe₂O₃ structural complexes are formed in the glasses similar to those in $FeVO_4$, containing VO_4 -groups.

Additionally a shoulder is observed which shifts gradually from 830 cm^{-1} in the case of the pure V_2O_5 to 840 cm^{-1} in that of FeVO₄. A strong band is found in the spectra of the corresponding crystal phases in these places (Fig. 2). This 830 cm^{-1} band in the spectrum of crystalline V_2O_5 is assigned to vibrations along the V—O—V chains. There are no V—O—V chains in the structure of FeVO₄²¹ but there exist FeO-polyhedra and VO-polyhedra bonded along the tops which signifies the formation of Fe—O—V bonds instead of V—O—V ones. The band at 840 cm^{-1} in the spectrum of crystalline FeVO₄ and the shoulder in the vitreous material may be assigned to the vibrations of these bonds.

It may be assumed that due to the preservation of a part of the V—O—V- and Fe—O—V-bonds in binary glasses (the shoulder at 840-830 cm⁻¹) there will be favourable conditions for the formation of more complicated chain complexes. Possibly, this is one of the causes for the successful achievement of the vitreous state of a wide concentration range in the Fe₂O₃—V₂O₅ system.

Conclusion

It is established that the short-range order of glasses in the Fe_2O_3 — V_2O_5 system is similar to that of the corresponding crystalline phases. The main vanadate polyhedra in the vitreous $FeVO_4$ are the VO_4 -groups. A transformation of the VO_5 -groups into VO_4 takes place with the change in the composition of binary glasses in a $FeVO_4$ direction. This may be established through the change in the intensity of the bands at 1020 and 930 cm⁻¹ in the IR-spectra.

References

- ¹ Dimitriev Y., Arnaudov M., Dimitrov V., Monatsh. Chem. 107, 1335 (1976).
- ² Dimitriev Y., Dimitrov V., Arnaudov M., Monatsh. Chem. 109, 791 (1978).
- ³ Dimitriev Y., Dimitrov V., Arnaudov M., J. Mat. Sci. 14, 723 (1979).
- ⁴ Dimitriev Y., Arnaudov M., Dimitrov V., J. Sol. State Chem. 38, 51 (1981).
 ⁵ Dimitrov V., Thesis, Sofia 1978.
- ⁶ Dimitriev Y., Dimitrov V., Arnaudov M., Topalov D., in preparation.
- ⁷ Dimitriev Y., Ivanova I., Gattef E., J. N. Cryst. Sol. 45, 297 (1981).
- ⁸ Cirilli V., Burdese A., Brisi C., La Metall. Ital. 48, 309 (1956).
- ⁹ Kurina L. N., Ediseeva O. N., Neorg. mater. 9, 983 (1973).
- ¹⁰ Barraclough C. G., Lewis S., Nyholm R. S., J. Chem. Soc. **11**, 3552 (1959).
- ¹¹ Fredericson L. D., Hausen D. M., Analyt. Chem. **35**, 134 (1963).
- ¹² Bachman H. G., Ahmed F. R., Barnes W. H., Z. Kristallogr. 115, 110 (1961).
- ¹³ Fotiev A. A., Ivakin A. A., Vanadievie soedinenija shctelotshnikh metallov i uslovia ikh obrasovanija, p. 62. Sverdlovsk. 1969.
- ¹⁴ Povarennikh A. S., Kristallokhimitsheskaja klassifikatsija mineralnikh vidov. Kiev: Naukova dumka. 1966.
- ¹⁵ Nakamoto K., IR-Spectra of Inorganic and Coordination Compounds. New York-London: Wiley. 1963.
- ¹⁶ Baran E. J., Aymonino P. J., Z. anorg. allg. Chem. 365, 211 (1969).
- ¹⁷ Baran E. J., Botto I. L., Ramos J. F., Aymonino P. J., Monatsh. Chem. 109, 1139 (1978).
- ¹⁸ Baran E. J., Aymonino P. J., Z. anorg. allg. Chem. 383, 226 (1971).
- ¹⁹ Miller I. I., Kasimov G. G., Fotiev A. A., in: Khimija redkikh elementov, p. 109. Sverdlovsk. 1971.
- ²⁰ Baran E. J., Botto I. L., Monatsh. Chem. 108, 311 (1977).
- ²¹ Robertson B., Kostiner E., J. Sol. State Chem. 4, 29 (1972).